Minimax Bayes Estimation in Nonparametric Regression
نویسندگان
چکیده
منابع مشابه
Empirical Bayes Estimation in Wavelet Nonparametric Regression
Bayesian methods based on hierarchical mixture models have demonstrated excellent mean squared error properties in constructing data dependent shrinkage estimators in wavelets, however, subjective elicitation of the hyperparameters is challenging. In this chapter we use an Empirical Bayes approach to estimate the hyperparameters for each level of the wavelet decomposition, bypassing the usual d...
متن کاملNonparametric Bayes-risk estimation
Absrract-Two nonparametric methods to estimate the Bayes risk using classified sample sets are described and compared. The first method uses the nearest neighbor error rate as an estimate to bound the Bayes risk. The second method estimates the Bayes decision regions by applying Parzen probability-density function estimates and counts errors made using these regions. This estimate is shown to b...
متن کاملMinimax Kernels for Nonparametric Estimation
SUMMARY The minimax kernels for nonparametric function and its derivative estimates are investigated. Our motivation comes from a study of minimax properties of nonparametric kernel estimates of probability densities and their derivatives. The asymptotic expression of the linear maximum risk is established. The corresponding minimax risk depends on the solutions to a kernel variational problem,...
متن کاملFuzzy sets in nonparametric Bayes regression
Abstract: A simple Bayesian approach to nonparametric regression is described using fuzzy sets and membership functions. Membership functions are interpreted as likelihood functions for the unknown regression function, so that with the help of a reference prior they can be transformed to prior density functions. The unknown regression function is decomposed into wavelets and a hierarchical Baye...
متن کاملA MODIFICATION ON RIDGE ESTIMATION FOR FUZZY NONPARAMETRIC REGRESSION
This paper deals with ridge estimation of fuzzy nonparametric regression models using triangular fuzzy numbers. This estimation method is obtained by implementing ridge regression learning algorithm in the La- grangian dual space. The distance measure for fuzzy numbers that suggested by Diamond is used and the local linear smoothing technique with the cross- validation procedure for selecting t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Annals of Statistics
سال: 1991
ISSN: 0090-5364
DOI: 10.1214/aos/1176348383